• Skip to primary navigation
  • Skip to main content
  • Skip to primary sidebar
scil

scil

swiss competence center for innovations in learning

  • Das Kompetenzzentrum
        • Das Kompetenzzentrum
        • Über scil
        • Team
        • Anfahrt
        • Newsletter
  • Weiterbildung
        • Weiterbildung
        • Programme
          • CAS Bildungsmanagement: New Work – New Skills – New Learning
          • CAS Lerndesign: Designing Future Learning
        • Module
        • Trend- & Community Day
          • 10. scil Trend- & Community Day
          • Frühere Veranstaltungen
        • Effektive Kompetenzentwicklung
          • Warum Weiterbildung bei scil Academy?
          • Blended Learning Design by scil
          • Lernbegleiter:innen & Fachexpert:innen
  • Entwicklung / Begleitung
        • Entwicklung / Begleitung
        • Innovationskreise & Entwicklungspartnerschaften
        • Entwicklungsthemen
          • Digitale Transformation von L&D
          • Lernkultur: Analyse & Entwicklung
          • Hi-Impact Learning & Development
          • Qualitätsentwicklung und Wertbeitrag
          • Referenzprojekte
        • Fachcoaching
  • Forschung & Publikationen
        • Forschung & Publikationen
        • scil Blog
        • Publikationen, Berichte & Studien
        • Trendstudien
  • Mein Konto
    • Search
    • Social Media, Newsletter
HomeBeiträgeKI-basierte Lernplattformen als "Zukunft" des Lernens? (1/3)

KI-basierte Lernplattformen als "Zukunft" des Lernens? (1/3)

2. Juli 2018

Diversität und tutorielle Betreuung 1:1

Unsere (Bildungs-)Welt wird zunehmende bunter. Lebensläufe, Berufs- und Bildungsbiografien sind vielfältiger als früher. Die Heterogenität von Teilnehmenden an Bildungsangeboten nimmt zu. Dies gilt für Schulen genauso wie für Hochschulen, und für die Berufsbildung ebenso wie für die betriebliche Weiterbildung. Gleichzeitig ändern sich unsere Erwartungen an (Bildungs-)Dienstleistungen. Wir erwarten immer mehr, dass diese auf uns persönlich zugeschnitten sind und für uns persönlich passen.
Vor diesem Hintergrund ist auch das von Benjamin Bloom vor gut 30 Jahren formulierte „2-Sigma-Problem“ relevant: verschiedene Studien hatten aufgezeigt, dass Lernende, die in einer 1:1 Situation von Tutoren individuell betreut wurden, bei Lernerfolgsüberprüfungen 2 Standardabweichungen besser abschnitten als Lernende in konventionellen Lernarrangements mit ca. 30 Lernenden pro Lehrperson. Oder anders gesagt: die individuell betreuten Lernenden waren im Durchschnitt so gut wie die besten 2% der Lernenden in (damals) konventionellen Lernarrangements (vgl. Abbildung 1).
 

Abbildung 1: Quelle: Bloom 1984

Tutorielle Einzelbetreuung von Lernenden ist aber in der Regel kein tragfähiges bzw. bezahlbares Modell. Bloom und sein Forschungsteam haben sich daher der Suche nach Lehr-/Lernmethoden zugewendet, die zu ähnlich guten Ergebnissen in grösseren Lerngruppen führen (z.B. Kombinationen von Mastery Learning, partizipativen Lernformen und einer Ausrichtung des Lernens auf höhere kognitive Prozesse – vgl. Bloom et al. 1984).

Künstliche Intelligenz und adaptive tutorielle Systeme

Forschungs- und Entwicklungsarbeiten in den Feldern künstliche Intelligenz und adaptive tutorielle Systeme befassen sich mit einem von Bloom nicht verfolgten Lösungsansatz: der Entwicklung von technischen Lösungen, die eine hochgradig lernwirksame und zugleich kostengünstige 1:1 Lernbegleitung für eine grosse Anzahl von Menschen ermöglichen – im Kontext der Schul- und Hochschulbildung genauso wie im Kontext der betrieblichen Weiterbildung.
Diesen Entwicklungen und den daraus hervorgegangenen Produkten wird weitherum grosses Nutzenpotenzial zugesprochen und sie werden zum Teil als «die Zukunft» des Lernens bezeichnet. Dabei kann adaptives Lernen durch verschiedene Typen von technischen Systemen unterstützt werden. Beispiele hierfür sind u.a. die folgenden:

  • Lernkarteikarten-Systeme (z.B. ankiapp.com)
  • Sprachlernapps & -services (z.B. duolingo.com)
  • Plattformen für kuratierte und personalisierte Lerninhalte (z.B. degreed.com)
  • Adaptive Lernplattformen / Intelligente tutorielle Systeme (z.B. knewton.com)

Im Fokus dieser kurzen Reihe von Beiträgen steht der zuletzt genannte Typ von Systemen. Dabei will ich den folgenden Fragen nachgehen:

  1. Wie funktionieren adaptive Lernplattformen? (Teil 1)
  2. Wie leistungsfähig sind diese Systeme? (Teil 2)
  3. Was sind Besonderheiten von E-Learning mit adaptiven Lernplattformen? (Teil 3)

Wie funktionieren adaptive Lernplattformen? Ein Blick unter die Motorhaube

Adaptive Lernsysteme (ALS) bzw. intelligente tutorielle Systeme (ITS) berücksichtigen die Lernenden in unterschiedlicher Weise. Frühere Systeme beschränkten sich darauf, den Lernenden Auswahlmöglichkeiten zwischen verschiedenen Inhalten zu bieten und die Lernaktivitäten zu beobachten. Auf dieser Grundlage konnten dann z.B. nächste Lerninhalte mit passendem Schwierigkeitsgrad angeboten werden. Neuere Systeme gehen darüber hinaus, indem sie verschiedene Modelle bzw. Komponenten integrieren: ein Domänen-Modell (Inhalte), ein tutorielles Modell (Lernprozess), ein Lernenden-Modell (Merkmale des / der Lernenden) sowie eine darüber gelegte Benutzeroberfläche.
 

Abbildung 1: Komponenten eines adaptiven tutoriellen Systems (Darstellung nach Bagheri 2015, S. 5ff.)

 
Mittlerweile sind eine ganze Reihe von adaptiven Lernsystemen bzw. intelligenten tutoriellen Systemen verfügbar, die unterschiedliche Bildungskontexte adressieren: Schulen, Hochschulen und betriebliche Weiterbildung ebenso wie verschiedene fachliche Kontexte – von Mathematik und Naturwissenschaften bis hin zu Management-Themen.
Die verschiedenen, am Markt verfügbaren Systeme unterscheiden sich im Hinblick auf die Art des hinterlegten Domänenmodells, das tutorielle Modell und auch das Lernenden-Modell.

Beispiel ALEKS

Das ursprünglich aus dem Feld der Mathematik-Didaktik stammende Produkt ALEKS (Assessment and Learning in Knowledge Spaces) basiert auf der „Knowledge Space Theorie“ (Theorie der Wissensräume) und damit verbundenen Ansätzen in der Didaktik der Mathematik. ALEKS wurde ab 1994 an der University of California, Irvine im Rahmen eines Forschungsprojekts entwickelt und 2013 von McGraw-Hill Education erworben. ALEKS bietet eine Reihe von Kursen für Schulen und Hochschulen an, insbesondere zu Mathematik, Statistik, Buchhaltung, Chemie sowie verschiedene Vorbereitungskurse auf Hochschuleignungstests (https://www.aleks.com/about_aleks/course_products).
Zentral für die Funktionsweise von ALEKS ist die Abbildung einer inhaltlichen Domäne (z.B. Grundlagen der Algebra) über einen Wissensraum, Eingangstest für einen Lernenden (vgl. Abbildung 2), Errechnung des wahrscheinlichsten Wissensstands (vgl. Abbildung 3) und darauf aufbauend die Entwicklung von einzelnen Themen (z.B. Gleichungen mit zwei Unbekannten).
 

Abbildung 2: Beispiel für ein Test-Item in ALKES (Quelle: ALEKS Benutzerhandbuch, 2017, https://www.aleks.com/manual/pdf/learners-highedmath.pdf)

 
 
Abbildung 3: Vereinfachte Repräsentation eines Wissensraums und der veränderten Wahrscheinlichkeit von bestimmten Wissensständen eines Lernenden über eine Abfolge von kurzen Assessments (Quelle: ALEKS Corporation 2012)

 
Im Rahmen der individualisierten Diagnostik zum Wissensstand wählt ALKES jeweils die Frage / Aufgabe aus, die – auf Basis des aktuell berechneten Wissensstands – maximal informativ ist. Wenig informativ in diesem Sinne wäre eine Aufgabe, von der mit grosser Wahrscheinlichkeit zu erwarten ist, dass der / die Lernende sie bewältigen kann. Viel informativer ist dagegen eine Aufgabenstellung, für die diese Erwartung lediglich bei etwa 50% liegt. Auf der Grundlage der Antwort zu einer solchen Frage wird dann 1) der individuelle Wissensstand jeweils neu berechnet und 2) eine nächste passende Aufgabe zugewiesen.

Beispiel area9learning

area9learning grenzt sich bei der Darstellung der eigenen adaptiven Lernplattform deutlich von Plattformen wie z.B. ALEKS ab. Zum einen dadurch, dass einem „schliessenden Modell“ (wie bei ALEKS) die Orientierung an einem „biologischen Modell“ gegenüber gestellt wird. Zum anderen durch eine explizite Positionierung als Anbieter im Feld betriebliches Lernen / corporate learning. Insbesondere bei zwei Grundannahmen gibt es deutliche Unterschiede. Nick Howe (area9learning) zufolge

  • macht es keinen Sinn, von «hart verdrahteten» Beziehungen zwischen Lernzielen / Lerninhalten (Voraussetzungen etc.) auszugehen; vielmehr gibt es viele, zum Teil auch unvorhersehbare Wege zum Lernziel;
  • gibt es bei der Bestimmung des aktuellen Wissens- / Lernstands immer Ungenauigkeiten («Rauschen»): neues Wissen / neue Fertigkeiten kommen undokumentiert dazu (z.B. über informelle Lernaktivitäten und Erfahrungen ausserhalb der Plattform); bereits gelerntes Wissen geht wieder verloren und Fertigkeiten lassen nach; Lernziele können unscharf formuliert sein; die Zuordnung von Test-Aufgaben zu Lernzielen kann unscharf sein; usw.

Bei der Bestimmung des Wissensstands eines Lernenden werden daher zwei Aspekte berücksichtigt (vgl. Abbildung 4):

  • zum einen der objektive Grad, zu dem die gegebene Antwort korrekt ist;
  • zum anderen die subjektive Einschätzung dazu, wie sicher sich ein(e) Lerner(in) bei der Antwort ist.

 

Abbildung 4: Beispiel für ein Test-Item mit gleichzeitiger Abfrage dazu, wie sicher sich ein Lerner bezüglich der Antwort fühlt (Quelle: area9learning 2017, S. 5)

 
Die Modellierung des Wissens eines Lerners erfolgt über Algorithmen, in die beispielsweise die folgenden Werte einfliessen:

  • Numerischer Wert für die Bedeutsamkeit des Inhalts
  • Punktwert für die korrekte / inkorrekte Antwort
  • Punktwert für die Selbsteinschätzung
  • Punktwert für die Zeitdauer der Bearbeitung, zusammengesetzt aus
    • Zeitdauer für das Lesen und Beantworten der Frage,
    • Zeitdauer für das Ausfüllen der Selbsteinschätzung,
    • Zeitdauer für das Lesen des Feedbacks nachdem die Antwort bewertet wurde.

Dabei werden die der Berechnung zugrundeliegenden Modelle und Algorithmen immer wieder überprüft und neu kalibriert. Hierzu kann area9learning (wie alle anderen Anbieter von solchen adaptiven Lernplattformen auch) auf viele Millionen Datenpunkte zurückgreifen, die bereits aus der Vergangenheit vorliegen und kontinuierlich hinzukommen.
Um einen effektiven und effizienten Lernprozess zu gewährleisten, müssen zwei potenziell konfligierende Ziele ausbalanciert werden:

  • zum einen soll die Zuverlässigkeit, mit der die Diagnose von Wissen / Kompetenz erfolgt, möglichst hoch sein bzw. bleiben; zusätzliche Fragen bzw. Aufgaben zum gleichen Thema erhöhen diese Zuverlässigkeit;
  • gleichzeitig soll aber der Zeitaufwand für Training möglichst geringgehalten werden; der Verzicht auf weitere Fragen zum gleichen Thema ist hierfür der zentrale Treiber.

Das Ausbalancieren dieser beiden konkurrierenden Anforderungen erfolgt über verschiedene weitere Modelle und Algorithmen, beispielsweise die folgenden:

  • die Modellierung von „vollständiger Bearbeitung“ eines Themas / Inhalts;
  • die Modellierung von „Kompetenz“;
  • die Modellierung von „Vergessen“;
  • die Modellierung von „benötigter Zeit“ für das Bearbeiten einer Aufgabe.

Eine adaptive Lernplattform wie area9learning bestimmt also den nächsten Lerninhalt bzw. die nächste Lernaufgabe, indem verschiedene Anforderungen ausbalanciert werden (vgl. Howe 2017, S. 25):

  • das Komplettieren / vollständige Bearbeiten eines bereits begonnenen Themas;
  • ein möglichst hoher Zuwachs an Wissen;
  • das Wiederholen von bereits Gelerntem, um neues Wissen langfristig zu verankern;
  • die Förderung der Genauigkeit der Selbsteinschätzung von Lernenden bzw. die Stärkung von deren Zutrauen in die eigene Selbsteinschätzung zu eigenem Wissen / eigenen Kompetenzen;
  • die laufende Verbesserung der Modelle und Algorithmen, um Rauschen / Ungenauigkeiten zu reduzieren;
  • den Zeiteinsatz und Motivation der Lernenden.

 

Fortsetzung

Dieser Beitrag findet seine Fortsetzung in den beiden nachfolgend aufgeführten Beiträgen:

  • Wie leistungsfähig sind adaptive Lernplattformen? (Teil 2)
  • Was sind Besonderheiten von E-Learning mit adaptiven Lernplattformen? (Teil 3)

 


Referenzen:
ALEKS Corporation (2012): What makes ALEKS unique. ALEKS Corporation. Online verfügbar unter https://www.aleks.com/about_aleks/overview.
area9learning (2017): adaptive learning. Eliminating corporate e-learning fatique. area9learning. area9learning.com. Online verfügbar unter https://offers.area9learning.com/adaptive-learning-whitepaper.
Bagheri, Mehri Mohammad (2015): Intelligent and adaptive tutoring systems. How to integrate learners. In: International Journal of Education 7 (2).
Bloom, Benjamin S. (1984): The 2 Sigma Problem. The search for methods of group instruction as effective as one-to-one tutoring. In: Educational Researcher 13 (6), S. 4–16.
Howe, Nick (2017): Adaptive learning insights. A practical guide to the future of corporate training. area9learning. Chestnut Hill, MA.
Wilson, Kevin; Nichols, Zack (2015): The Knewton Platform. A General-Purpose Adaptive Learning Infrastructure. knewton.com.


Am 25.09. + 02.10 + 16.10. 2018 findet das Online-Modul „Adaptive und KI-basierte Lernsysteme“ im Rahmen unseres Zertifikatsprogramms „Digitale Bildung“ statt. Dieser Beitrag ist ein kurzer Auszug aus dem Skript zu diesem Weiterbildungsmodul.

christoph-meier

Geschrieben von
Christoph Meier

Veröffentlicht in
Beiträge

Verschlagwortet
adaptive Lernumgebungen, AI / KI, E-Learning / TEL

Reader Interactions

Trackbacks

  1. KI-basierte Lernplattformen als "Zukunft" des Lernens? (2/3) - scil sagt:
    6. Juli 2018 um 16:48 Uhr

    […] einem längeren Beitrag hatte ich letzte Woche aufgezeigt, was unter der Haube von KI-basierten Lernplattformen vorgeht […]

    Antworten
  2. KI-basierte Lernplattformen als "Zukunft" des Lernens? (3/3) - scil sagt:
    12. Juli 2018 um 21:05 Uhr

    […] hatte ich aufgezeigt, wie adaptive Lernplattformen in ihren Grundzügen funktionieren (Teil 1) und dass sie zu deutlichen Verbesserungen im Hinblick auf Lernerfolg, Abbrecher-Quoten und […]

    Antworten
  3. KI-basierte, adaptive Lernplattformen - eine Marktübersicht - scil sagt:
    4. August 2018 um 16:15 Uhr

    […] Kurs-Modul „KI-basierte, adaptive Lernplattformen“ hatte ich in den letzten Wochen u.a. diese dreiteilige Beitragsreihe zum Thema gepostet. Beim Stöbern im WWW bin ich jetzt auf diese recht umfangreiche Marktübersicht zu […]

    Antworten
  4. Adaptive Lernplattformen - braucht es dann noch Lehrpersonen? - scil sagt:
    5. August 2018 um 11:47 Uhr

    […] Technical University ist ein early adopter im Hinblick auf KI-basierte, adaptive Lernsysteme (vgl. diese dreiteilige Beitragsreihe zum Thema).  Seit 2012 ist dort die adaptive Lernplattform „intellipath“ im Einsatz. Bis zum […]

    Antworten
  5. Adaptive Lernmodule - scil sagt:
    25. Januar 2019 um 15:39 Uhr

    […] den Sommer hatte ich hier drei Beiträge zu KI-basierten, adaptiven Lernumgebungen eingestellt. Mittlerweile ist unser Modul „KI-basierte, adaptive Lernumgebungen„, auf […]

    Antworten
  6. Künstliche Intelligenz: Die Auswirkungen auf Lernen, Lehren und (Weiter-)Bildung (Tuomi 2018) - scil sagt:
    15. Februar 2019 um 6:39 Uhr

    […] typischerweise ein Domänen-Modell, ein Lerner-Modell und ein tutorielles Modell (vgl. dazu diesen Blogpost). Diese Systeme haben sich bisher aber vor allem in bestimmten Feldern wie z.B. Mathematik und […]

    Antworten

Schreiben Sie einen Kommentar Antworten abbrechen

Ihre E-Mail-Adresse wird nicht veröffentlicht. Erforderliche Felder sind mit * markiert


Primary Sidebar

Lizenz Blogbeiträge

Creative Commons Lizenzvertrag
Unsere Blogbeiträge sind lizenziert unter einer Creative Commons Namensnennung - Weitergabe unter gleichen Bedingungen 4.0 International Lizenz.

Tag Cloud

70:20:10 adaptive Lernumgebungen AI / KI Analytics (Teaching~ / Learning~) Augmentation Bildungsmanagement Bildungsmarketing Blended Learning Change Management Coaching Digitale Arbeitswelt Digitale Bildung Digitale Kompetenzen Digitale Transformation Digitalisierung E-Learning / TEL Entwicklungsförderliche Führung Evaluation Führungskräfteentwicklung Hochschullehre Informelle Lernformen Kompetenz- & Skills-Management Kompetenzmodell Kuratieren Learning Design Learning Professionals Lern- / Trainingsmethoden Lernende Organisation Lernen in / mit VR, AR, XR Lernkultur Lernmedien Lernplattform Lernräume mobile learning MOOC Professionelle Kompetenzentwicklung Ro/Bots for learning Social Media Strategieentwicklung und Portfolio-Management Tagungen & Konferenzen Trends Trendstudie Video-basiertes Lernen Wertbeitrag / Learning Value Management Zukunftsorientierte Kompetenzentwicklung

Neueste Beiträge

  • GPT-4: Auf dem Weg in die Lern- & Arbeitswelt 5.0
  • Leitlinien für den Umgang mit ChatGPT an Bildungsinstitutionen
  • KI-Panik? Ein Orientierungsrahmen zur digitalen Transformation für Bildungsverantwortliche
  • Ein Rahmenmodell für ‚Institutional Analytics‘
  • Wirksamkeit von Technologie-unterstütztem (immersivem) Lernen – mediendidaktische Wirkungsforschung

Neueste Kommentare

  • Leitlinien für den Umgang mit ChatGPT an Bildungsinstitutionen | digithek blog bei Leitlinien für den Umgang mit ChatGPT an Bildungsinstitutionen
  • Why All Our Classes Suddenly Became AI Classes | Weiterbildungsblog bei Leitlinien für den Umgang mit ChatGPT an Bildungsinstitutionen
  • Die Top 6 Trends in der Weiterbildung bei Beschleunigte Veränderung von Kompetenzerfordernissen im Arbeitsmarkt & Folgen für die Personalentwicklung
  • PE Experiment – PeerFinder Blog bei New Work, New Skills – und auch New Learning?
  • Schlaglichter auf New Work – New Skills – New Learning: Edubase future night 25.01.2023 | Weiterbildungsblog bei Schlaglichter auf New Work – New Skills – New Learning: Edubase future night 25.01.2023

Archives

  • 2023
    • März 2023
    • Februar 2023
    • Januar 2023
  • 2022
    • Dezember 2022
    • November 2022
    • Oktober 2022
    • September 2022
    • August 2022
    • Juli 2022
    • Juni 2022
    • Mai 2022
    • März 2022
    • April 2022
    • Februar 2022
    • Januar 2022
  • 2021
    • Dezember 2021
    • November 2021
    • Oktober 2021
    • September 2021
    • August 2021
    • Juli 2021
    • Juni 2021
    • Mai 2021
    • März 2021
    • April 2021
    • Februar 2021
    • Januar 2021
  • 2020
    • Dezember 2020
    • November 2020
    • Oktober 2020
    • September 2020
    • August 2020
    • Juli 2020
    • Juni 2020
    • Mai 2020
    • März 2020
    • April 2020
    • Februar 2020
    • Januar 2020
  • 2019
    • Dezember 2019
    • November 2019
    • Oktober 2019
    • September 2019
    • August 2019
    • Juli 2019
    • Juni 2019
    • Mai 2019
    • März 2019
    • April 2019
    • Februar 2019
    • Januar 2019
  • 2018
    • Dezember 2018
    • November 2018
    • Oktober 2018
    • September 2018
    • August 2018
    • Juli 2018
    • Juni 2018
    • Mai 2018
    • März 2018
    • April 2018
    • Februar 2018
    • Januar 2018
  • 2017
    • Dezember 2017
    • November 2017
    • Oktober 2017
    • September 2017
    • August 2017
    • Juli 2017
    • Juni 2017
    • Mai 2017
    • März 2017
    • April 2017
    • Februar 2017
    • Januar 2017
  • 2016
    • Dezember 2016
    • November 2016
    • Oktober 2016
    • September 2016
    • August 2016
    • Juli 2016
    • Juni 2016
    • Mai 2016
    • März 2016
    • April 2016
    • Februar 2016
    • Januar 2016
  • 2015
    • Dezember 2015
    • November 2015
    • Oktober 2015
    • September 2015
    • August 2015
    • Juli 2015
    • Juni 2015
    • Mai 2015
    • März 2015
    • April 2015
    • Februar 2015
    • Januar 2015
  • 2014
    • Dezember 2014
    • November 2014
    • Oktober 2014
    • September 2014
    • August 2014
    • Juli 2014
    • Juni 2014
    • Mai 2014
    • März 2014
    • April 2014
    • Februar 2014
    • Januar 2014
  • 2013
    • Dezember 2013
    • November 2013
    • Oktober 2013
    • September 2013
    • August 2013
    • Juli 2013
    • Juni 2013
    • Mai 2013
    • März 2013
    • April 2013
    • Februar 2013
    • Januar 2013
  • 2012
    • Dezember 2012
    • November 2012
    • Oktober 2012
    • September 2012
    • August 2012
    • Juli 2012
    • Juni 2012
    • Mai 2012
    • März 2012
    • April 2012

Kategorien

  • Allgemein
  • Aufträge, Projekte & Studien
  • Beiträge
  • Fundstücke
  • Publications
  • Stichworte
  • Vertiefung
  • Vorträge & Workshops

Meta

  • Anmelden
  • Feed der Einträge
  • Kommentare-Feed
  • WordPress.org
Suche

 

Social Media

scil

Universität St.Gallen

Gehe direkt zu

IBB-HSG
scil Newsletter
Login

Kontakt

swiss competence centre for innovations in learning (scil)
Universität St.Gallen (HSG)
St. Jakob-Strasse 21
9000 St. Gallen

+41712243155

scil-info@unisg.ch

Location

From insight to impact.

Akkreditierung


Mitglied von


Copyright © 2023 Universität St.Gallen, Schweiz

  • Impressum
  • Kontakt
  • AGB
  • Datenschutz
Cookie-Zustimmung verwalten
Um Ihnen ein optimales Erlebnis zu bieten, verwenden wir Technologien wie Cookies, um Geräteinformationen zu speichern bzw. darauf zuzugreifen. Wenn Sie diesen Technologien zustimmen, können wir Daten wie das Surfverhalten oder eindeutige IDs auf dieser Website verarbeiten. Wenn Sie Ihre Zustimmung nicht erteilen oder zurückziehen, können bestimmte Merkmale und Funktionen beeinträchtigt werden.
Funktional Immer aktiv
Der Zugriff oder die technische Speicherung ist unbedingt für den rechtmäßigen Zweck erforderlich, um die Nutzung eines bestimmten Dienstes zu ermöglichen, der vom Abonnenten oder Nutzer ausdrücklich angefordert wurde, oder für den alleinigen Zweck der Übertragung einer Nachricht über ein elektronisches Kommunikationsnetz.
Vorlieben
Die technische Speicherung oder der Zugriff ist für den rechtmäßigen Zweck der Speicherung von Voreinstellungen erforderlich, die nicht vom Abonnenten oder Nutzer beantragt wurden.
Statistiken
Die technische Speicherung oder der Zugriff, der ausschließlich zu statistischen Zwecken erfolgt. Die technische Speicherung oder der Zugriff, der ausschließlich zu anonymen statistischen Zwecken verwendet wird. Ohne eine Aufforderung, die freiwillige Zustimmung Ihres Internetdienstanbieters oder zusätzliche Aufzeichnungen von Dritten können die zu diesem Zweck gespeicherten oder abgerufenen Informationen allein in der Regel nicht zu Ihrer Identifizierung verwendet werden.
Marketing
Die technische Speicherung oder der Zugriff ist erforderlich, um Nutzerprofile zu erstellen, um Werbung zu versenden oder um den Nutzer auf einer Website oder über mehrere Websites hinweg zu ähnlichen Marketingzwecken zu verfolgen.
Optionen verwalten Dienste verwalten Anbieter verwalten Lesen Sie mehr über diese Zwecke
Voreinstellungen anzeigen
{title} {title} {title}